Accelerating the computation of bath spectral densities with super-resolution
نویسندگان
چکیده
Irreversible processes such as solvation, energy transfer, and chemical binding have received renewed interest in recent years. Because these processes involve large systems with many degrees of freedom, the typical approach to studying these processes is the open quantum systems formalism, in which the degrees of freedom are partitioned into a system of interest and a bath held at thermal equilibrium [1, 2]. It is commonly assumed that the system only couples weakly to the bath, making the precise nature of the bath a secondary concern in the physical theory. For example, in studying the energy transfer dynamics in a system of chromophores embedded in a protein framework, each chromophore is individually coupled to many thousands of atoms in the protein, but the system–bath formalism dramatically simplifies all of these couplings in order to make the dynamics tractable [3–5]. Renewed interest in the strong and intermediate coupling region, relevant for energy transfer in the exciton dynamics of light-harvesting complexes, has lead to various studies [5–28] on the precise influence of the bath on the higher systems. Higher-order phonon processes, non-Markovian effects, and structures in the exciton–phonon coupling change the energy transfer [29–31]. Thus, details in the bath are relevant and need to be taken into account in realistic simulations. Accordingly, our goal in this paper is to apply a recent signal processing Abstract Quantum transport and other phenomena are typically modeled by coupling the system of interest to an environment, or bath, held at thermal equilibrium. Realistic bath models are at least as challenging to construct as models for the quantum systems themselves, since they must incorporate many degrees of freedom that interact with the system on a wide range of timescales. Owing to computational limitations, the environment is often modeled with simple functional forms, with a few parameters fit to experiment to yield semi-quantitative results. Growing computational resources have enabled the construction of more realistic bath models from molecular dynamics (MD) simulations. In this paper, we develop a numerical technique to construct these atomistic bath models with better accuracy and decreased cost. We apply a novel signal processing technique, known as super-resolution, combined with a dictionary of physically motivated bath modes to derive spectral densities from MD simulations. Our approach reduces the required simulation time and provides a more accurate spectral density than can be obtained via standard Fourier transform methods. Moreover, the spectral density is provided as a convenient closed-form expression which yields an analytic time-dependent bath kernel. Exciton dynamics of the Fenna–Matthews–Olson light-harvesting complex are simulated with a second-order time-convolutionless
منابع مشابه
Correlation between Auditory Spectral Resolution and Speech Perception in Children with Cochlear Implants
Background: Variability in speech performance is a major concern for children with cochlear implants (CIs). Spectral resolution is an important acoustic component in speech perception. Considerable variability and limitations of spectral resolution in children with CIs may lead to individual differences in speech performance. The aim of this study was to assess the correlation between auditory ...
متن کاملSuper-resolution of Defocus Blurred Images
Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کامل